a2 United States Patent

US009471340B2

10) Patent No.: US 9,471,340 B2

Gschwind et al. 45) Date of Patent: *Oct. 18, 2016
(54) GLOBAL ENTRY POINT AND LOCAL (56) References Cited
ENTRY POINT FOR CALLEE FUNCTION
U.S. PATENT DOCUMENTS
(71) Applicant: International Business Machines 5797014 A * $/1998 Gheith GOGE /41
. ,797, eith ..o,
Corporation, Armonk, NY (US) 7177163
6,016,399 A * 1/2000 Chang GOGF 8/4452
(72) Inventors: Michael K. Gschwind, Chappaqua, NY & 717/142
(US); Ulrich Weigand, Holzgerlingen 6,219,830 B1* 4/2001 Eidtcccccccoivnnns GOGF 9/44521
(DE) 710/68
6,321,275 B1* 11/2001 McQuistan GOGF 9/547
. 719/330
(73) Assignee: gggﬁ?@;%%ﬁf)ggﬁgis 6408433 BL* 62002 Click, Jt. oo GOGF 8/447
, 717/154
Armonk, NY (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
US.C. 154(b) by 0 days. Lupo, Wilken, “Post Register Allocation Spill Code Optimization”;
This patent is subject to a terminal dis- 2006 IEEE; [retrieved on Jun. 27, 2016]; Retrieved from Internet
claimer. <URL:http://dl.acm.org/citation.cfm?id=1122409>;pp. 1-11.*
(Continued)
(21) Appl. No.: 14/483,538
. Primary Examiner — Xi D Chen
. o4
(22) Filed: Sep. 11, 2014 74) Attorney, Agent, or Firm — Cantor Colburn LLP;
Y, AL
St B tt
(65) Prior Publication Data eve Benne
US 2015/0309812 A1 Oct. 29, 2015 7 ABSTRACT
Embodiments relate to a global entry point and a local entry
point for a callee function. An aspect includes executing, by
Related U.S. Application Data a processor, a function call from a calling function to the
(63) Continuation of application No. 14/263,135, filed on qallee funct}on. Ano ther aspect includes, bgsed on the fupc-
Apr. 28. 2014. now Pat. No. 9.329 875 tion call being a direct and external funct.lon call, entering
pr. %, ’ T eme e the callee function at the global entry point and executing
(51) Tnt. Cl prologue code in the callee function that calculates and
G 0;5 F 9 44 2006.01 stores a table of contents (TOC) value for the callee function
GOGF 9/445 (2006.01) in a TOC register. Another aspect includes, based on the
(01) function call being a direct and local function call, entering
GO6l’ 9/45 (2006.01) the callee function at the local entry point, wherein enterin;
1y p 2
(52) US.ClL the callee function at the local entry point skips the prologue
CPC s GOG6F 9/44521 (2013.01); GOGF 8/41 code. Another aspect includes, based on the function call
. . (2(.)13'01); GO6F 9/4426 (2013.01) being an indirect function call, entering the callee function
(58) Field of Classification Search at the global entry point and executing the prologue code.

None
See application file for complete search history.

11 Claims, 9 Drawing Sheets

300 COMPILE SOURCE CODE INTO OBJECT CODE BY COMPILER; INSERT GLOBAL ENTRY PQINT,
PROLOGUE CODE, AND LOCAL ENTRY POINT INTO EACH CALLEE FUNCTION IN OBJECT CODE

301

I L

RESOLVE FUNCTION CALLS IN OBJECT CODE AS LOCAL OR EXTERNAL;
INSERT BRANCHES TO ENTRY POINTS BASED ON RESOLUTION AND BASED ON WHETHER
FUNCTION CALLS ARE DIRECT OR INDIRECT
302

T

FOR DIRECT AND LOCAL FUNCTION CALL, USE LOCAL ENTRY POINT IN CALLEE FUNCTION;
CALLING FUNCTION PROVIDES TOC FOR CALLEE IN TOC REGISTER

303

S L

FOR DIRECT AND EXTERNAL FUNCTION CALL, USE GLOBAL ENTRY POINT IN CALLEE FUNCTION;
CALLEE FUNCTION COMPUTE $ TOC FROM FUNCTION ADDRESS REGISTER
AND STORES TOC IN TOC REGISTER

I

FOR INDIRECT FUNCTION CALL, USE GLOBAL ENTRY POINT IN CALLEE FUNCTION;
CALLEE FUNCTION COMPUTES TOC FROM FUNCTION ADDRESS REGISTER
AND STORES TOC IN TOC REGISTER
305

1

FOR FUNCTION CALL OF ANY TYPE TO A CALLEE FUNCTION THAT DOES NOT USE A TOC,
USE LOCAL ENTRY POINT IN CALLEE FUNCTION (OPTIONAL)

US 9,471,340 B2
Page 2

(56)

6,523,171
6,671,878
6,892,379
7,185,323
7,921,418
8,196,110
8,307,351
8,490,184
8,583,939
8,601,456
8,910,130
2005/0183072
2005/0273772
2007/0157178

2008/0046870

References Cited

U.S. PATENT DOCUMENTS

BL*
BL*
B2 *
B2 *
B2 *
B2 *
B2 *
B2 *
B2 *
B2 *
B2 *
Al*
Al*
Al*

Al*

2/2003
12/2003
5/2005
2/2007
4/2011
6/2012
11/2012
7/2013
11/2013
12/2013
12/2014
8/2005
12/2005
7/2007

2/2008

Dupuy ...cocoovvvein GOGF 8/51
717/142
BLiSS oo GOG6F 8/4452
717/141
Huangcccccoveene GOG6F 8/447
717/141
Nair oo GOG6F 8/433
717/141
Nair oo GOG6F 8/443
717/141
Cabrera Escandell . GO6F 21/54
717/141
Weigert GO6F 21/105
717/142
Brinkerccooov.. GO6F 21/51
717/126
Lee e GO6F 21/54
713/190
Duffy oo GOG6F 8/434
717/142
Munsterccoccevene GOGF 8/52
717/142
Horningcccccoeee. GO6F 21/14
717/140
Matsakisccceovene GOGF 8/41
717/136
Kogan ..o GOG6F 8/443
717/130
Nair oo GOG6F 8/443
717/140

2009/0193400 Al* 7/2009 Baev GOG6F 8/443
717/140
2010/0192135 Al* 7/2010 Krishnaswamy .. GOIR 31/3183
717/140
2012/0159463 Al* 6/2012 Druch ... GOG6F 8/67
717/140
2012/0272210 A1* 10/2012 Ni v GOG6F 8/52
717/140
2014/0208301 Al* 7/2014 Guan ... GOGF 9/4425
717/140

OTHER PUBLICATIONS

Choi, et al., “Stack Allocation and Synchronization Optimizations
for Java Using Escape Analysis”; 2003 ACM,; [retrieved on Jun. 27,
2016]; Retrieved from Internet <URL:http://dl.acm.org/citation.
cfm?id=945892>;pp. 876-910.*

Cheng, et al., “DBTG: Demand-driven Backtracking Test Genera-
tion”; 2008 IEEE; [retrieved on Jun. 27, 2016]; Retrieved from
Internet ~ <URL:http://ieeexplore.icee.org/stamp/stamp jsp?tp=&
arnumber=470927 1>;pp. 1944-1950.*

Lee, et al,, “Aggressive Function Splitting for Partial Inlining”;
2011 IEEE; [retrieved on Jun. 27, 2016]; Retrieved from Internet
<URL:http://ieecexplore.icee.org/stamp/stamp jsp?tp=&
arnumber=5936700>;pp. 80-86.*

List of IBM Patent or Patent Applications Treated as Related; Sep.
11, 2014; pp. 1-2.

M. Gschwind, et al., “Global Entry Point and Local Entry Point for
Callee Function,” Related Application, U.S. Appl. No. 14/263,135;
Filed Apr. 28, 2014; pp. 1-21.

* cited by examiner

US 9,471,340 B2

Sheet 1 of 9

Oct. 18, 2016

U.S. Patent

l "Old

201
AMOWIIN NIVIA
- - — 0l €01
707 901 50T
SaVEN 3000 1O3rg0
y3Iavo
d3HNI HI NGO Q3MVHS NOILLYOI1ddV
A A A A A
\ 4
601 801
NETLEL yILSIOTY
$S34aav N 901 oT
HOSSIO0Nd
00l
WILSAS H3LNdWOD

US 9,471,340 B2

Sheet 2 of 9

Oct. 18, 2016

U.S. Patent

¢ Old

S02 202
TV NOILONNA
NOILONNA (vo07)
WO01T ~ 3377VvD
A
0z —
NiH4
NOILONNd |,
vNyaxa) [z%ﬁ.w_dw“_
337VD
€0C 90¢ 00z
3000 AHVHEN AFAVHS T1VO 300D LOFFEO0 NOLLYOIddY
NOILONNAH
IVNY3LX3

US 9,471,340 B2

Sheet 3 of 9

Oct. 18, 2016

U.S. Patent

¢ Old

90¢
(I¥NOILdO) NOILONNL 33TTIVO NI LNIOd AY1INT TvD013sSN
‘001 V 3SN LON S30d 1VHL NOILONNL 33TV V OL IdAL ANV 40 TTvO NOILONNS ¥O4

LI

coe
H3LSIOTH D01 NI OOL S3HOLS ANV
H31SI93d SS3J4AAV NOILONNG WO D01 S31LNdWOD NOILONNG 3371vD
‘NOILONNA 337D NI LNIOd AYLNT TvE0T1D 3ASN “TIWO NOILONNSL LOIMIANI HO4

1

¥0€
H31S19349 D01 NI D01 S340OLS ANV
H31S193d SS34AAv NOILONNG WO D01 S 3LNdWOD NOILONNA 3371vD
‘NOILONNA 3377VO NI LNIOd AYLNI TvEOTO 3SN “T1vO NOILONNAL TVNYILX3 ANV 103¥Ia HO4

1 -

€0€
H31S1934 D01 NI 337TvO J04 D01 S3AINOYd NOILONNL ONITIVO
‘NOILONNA IFTTV¥O NI LNIOd AHYLINT TwD01 3SN “TIvD NOILONNA TvO01 ANY LO34HIa HOS

1

20€
1O3IANI 4O 103dIa 3V ST17v0 NOILONNA
¥IHIIHM NO d3Sva ANV NOILNT1OS3d NO d3svd SINIOd AYINT O1L SIHONVHE 1H3ASNI
TIVNYALX3 ¥O TwOO01 SV 3A0D 103rg0 NI STIvO NOILONNA IATOSTY

1

10€
33@02 103rdO NI NOILONNH 33T1vO HOVA OLNI LNIOd AYLNI TvO01 ANV ‘3d00 IND010¥d
‘INIOd AYMLINT TVEOTD LHISNI -¥ITHINOD A9 3AOD 1D3rd0 OLNI 3ACD IDHNOS T1dNOD

(s2]

US 9,471,340 B2

Sheet 4 of 9

Oct. 18, 2016

U.S. Patent

v Old

» ‘AYLNITVOOT O

‘D01 3377vD IHOILS
DOL 3FT1TVD LVINDTIVO
AMLNTTVEOTD ©
}
0o

€0¥ NOILONNLA IFTIVD

{

}
04

AYINTTVOOT O OL MNIT-ANV-HONVYHYL

207 NOILONNA ONITVO

10v
3002 193rg0 NOILYOITddY

0oy

US 9,471,340 B2

Sheet 5 of 9

Oct. 18, 2016

U.S. Patent

G Old

» AYINITVOOT O

D01 33TIVO IHOLS
D01 3FTIVO ILVINDTVO
AYINITVEOTD ©
}
09

€0S NOILONNA 3371VvD

{
(LO1S NOILONYLSNI d3ISNNN) dON
9 OL MNIT-ANV-HONVYS

}
04

Z20S NOILONNA SNITIVD

108
33a0O 153rd0O NOILVYOINddv

00s

US 9,471,340 B2

Sheet 6 of 9

Oct. 18, 2016

U.S. Patent

9 Old

$S34AAv N4 O1 HONvY4d
AAYINTTIVOOT O
01 SS3HAAv N4 138
2001 ¥ATIVO IAVS

¥09 an1s 11d

> AYMINTIVOOT O
D01 I3T7VO IHOLS
D01 337V ILVINOTVO
AYINTIVEO 1D ©
}
09

09 NOILONNL 337TVO

[

/

D01 ¥3TIVO FHOLSTY
‘9 OL MNIT-ANV-HONVHS

}

04

209 NOILONNA ONITIVD

109
3A09 193rg0 NOILYOITddY

US 9,471,340 B2

Sheet 7 of 9

Oct. 18, 2016

U.S. Patent

L ©Old

"AYLNITIVOOT ©
001 3377vO IHOLS
001 337V ILVINO VO

> AMINIIVEO1D O
}
0o

€0/ NOILONNL 3377vD

G0L AYVHAIT A3UVHS

SS34AAY N4 O1 HONvyYd
‘AYINITVEOTO O
01 SS34Aaav N4 13S
‘D01 ¥3TIVO IAVS oy

Y0/ 9nls 11d

/ 001 d377vD 340183
‘O OLMNIT-ONV-HONVYE

}
04

20Z NOILONNA ONIVYD

102 3A0D LD3Arg0 NOILYDIddv

US 9,471,340 B2

Sheet 8 of 9

Oct. 18, 2016

U.S. Patent

8 Ol

"AYLNITVOOT 29
001 3377vO IHOLS
001 3371V ILVINOTVO
AYLINTITVEOTO 29 «

‘AYLNITVOOT 1D
001 3377vO IHOLS
001 3371V ILVINOTVO

> AYINITVEOTO 1O

}
0z9

g¢08 NOILONNL 33771vO

V208 NOILONNL 33717vO

}

$]%5)

001 ¥3T1vO FH01S3
—— .SS3YAAV N4 OL MNIT-ANV-HONVYSL

*431NIOd NOILONNH WOY¥4 SS3HAAv N4 avo'

D01 ¥3TIVO IAVS
04

108 NOILONMA ONITIVO

o
[ee]

US 9,471,340 B2

Sheet 9 of 9

Oct. 18, 2016

U.S. Patent

6 Ol

206

WNIPS
d|gepeay/s|qessn
Jeindwion

O

706
21607
apon welboid

\ 006

1onpoid weiboid
Jsindwon

US 9,471,340 B2

1
GLOBAL ENTRY POINT AND LOCAL
ENTRY POINT FOR CALLEE FUNCTION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. application Ser.
No. 14/263,135 (Gschwind et al.), filed on Apr. 28, 2014,
which is herein incorporated by reference in its entirety.

BACKGROUND

The present invention relates generally to computer sys-
tems, and more specifically, to global entry point and local
entry point for a callee function.

In computer software, an application binary interface
(ABI) describes the low-level interface between an applica-
tion program and the operating system or between the
application program and another application. The ABI cover
details such as data type, size, and alignment; the calling
conventions which controls how function arguments are
passed and how return values are retrieved; the system call
numbers and how an application should make system calls
to the operating system; and in the case of a complete
operating system ABI, the binary format of object files,
program libraries, and so on. Several ABIs (e.g., the Inter-
active Unix ABI allowing to a wide range of programs to run
on a variety of Unix and Linux variants for the Intel x86
architecture) allow an application program from one oper-
ating system (OS) supporting that ABI to run without
modifications on any other such system, provided that
necessary shared libraries are present, and similar prerequi-
sites are fulfilled.

The program development cycle of a typical application
program includes writing source code, compiling the source
code into object files, building shared libraries, and linking
of the object files into a main executable program. Addi-
tional preparation, including loading of the main executable
program, and loading of the shared libraries for application
start-up occurs before the application is executed on a
particular hardware platform.

The compiler works on a single source file (compile unit)
at a time to generate object files. The compiler generates
object code without knowing the final address or displace-
ment of the code/data. Specifically, the compiler generates
object code that will access a table of contents (TOC) for
variable values without knowing the final size of the TOC or
offsets/addresses of various data sections. Placeholders for
this information are left in the object code and updated by
the linker A TOC is a variable address reference table that is
utilized, for example in an AIX environment, to access
program variables in a manner that supports shared libraries
and is data location independent. A similar structure,
referred to as a global offset table (GOT), performs a similar
function (e.g., indirect and dynamically relocatable access to
variables) in a LINUX environment. One difference between
a TOC and a GOT is that a TOC may contain actual data,
where a GOT only contains addresses (pointers) to data. In
the Linux PowerPC 64-bit environment the TOC contains
the GOT section plus small data variables.

A static linker combines one or more separately compiled
object files derived from distinct source files into a single
module, and builds a single GOT and/or TOC for the module
that is shared by files in the module. An executing applica-
tion includes at least one module, a statically linked module
typically containing the function main()as well as, option-
ally, several other functions, sometimes also known as the

10

15

20

25

30

35

40

45

50

55

60

65

2

main module. Some applications may be statically linked,
that is, all libraries have been statically integrated into the
main module. Many applications also make use of shared
libraries, sets of utility functions provided by the system or
vendors to be dynamically loaded at application runtime and
where the program text is often shared between multiple
applications.

Each module in a computer program may have a different
TOC pointer value. The TOC register or GOT register
(referred to hereinafter as the TOC register) may therefore
be saved and restored for each function call, either by a
procedure linkage table (PLT) stub code segment, or by the
callee function in conventions where the TOC register is
treated as a preserved (i.e., callee-saved) register.

SUMMARY

Embodiments include a method and computer program
product for a global entry point and a local entry point for
a callee function. An aspect includes executing, by a pro-
cessor, a function call from a calling function to the callee
function. Another aspect includes based on the function call
being a direct and external function call, entering the callee
function at the global entry point of the callee function and
executing prologue code in the callee function that calcu-
lates and stores a table of contents (TOC) value for the callee
function in a TOC register. Another aspect includes based on
the function call being a direct and local function call,
entering the callee function at the local entry point of the
callee function, wherein entering the callee function at the
local entry point skips the prologue code. Another aspect
includes based on the function call being an indirect function
call, entering the callee function at the global entry point and
executing the prologue code.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as embodiments is
particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The forgoing and other
features, and advantages of the embodiments are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

FIG. 1 depicts a computer system for a global entry point
and a local entry point for a callee function in accordance
with an embodiment;

FIG. 2 depicts local and external function calls accor-
dance with an embodiment.

FIG. 3 depicts a process flow for a global entry point and
a local entry point for a callee function in accordance with
an embodiment;

FIGS. 4-6 illustrate examples of use of a local entry point
for a local and direct function call;

FIG. 7 illustrates an example of use of a global entry point
for an external and direct function call;

FIG. 8 illustrates an example of use of a global entry point
for an indirect function call; and

FIG. 9 depicts a computer-readable medium according to
an embodiment.

DETAILED DESCRIPTION

Embodiments of a global entry point and a local entry
point for a callee function are provided, with exemplary
embodiments being discussed below in detail. A global entry
point, accompanied by prologue code, and a local entry

US 9,471,340 B2

3

point may be inserted at the beginning of each function in
application object code by, for example, a compiler. During
runtime, entry into a callee function at the global entry point
may trigger the prologue code, which calculates and saves a
TOC pointer value for the callee function. Entry into the
callee function at the local entry point may skip the TOC-
related operations in the prologue code, and the calling
function provides the TOC for the callee function in the TOC
register. Different types of function calls (i.e., local and
direct, external and direct, or indirect) may use different
entry points into a callee function. The calculation and
saving of the TOC pointer value for the callee function may
be performed based a value that is stored in a function
address register, which may be R12 in some embodiments.
The TOC register may be R2 in some embodiments.

A function call in application object code is either local or
external, and also either direct or indirect. For a local
function call, from a calling function to a callee function that
is in the same module as the calling function, the TOC
pointer value is the same for the calling function and the
callee function. For an external function call, from a calling
function to a callee function that is in a different module
from the calling function, the TOC pointer value is different
for the calling function and the callee function. Whether a
function call is local or external is determined at resolution
time, which may occur at various times, e.g., at compile
time, link time, or load time. When the type of a function call
is resolved, a branch to the appropriate entry point (i.e., local
or global) may be inserted in conjunction with the function
call. Whether a function call is direct or indirect is indicated
in the source code. A direct function call refers to the callee
function by its symbol, or name. An indirect function call
refers to the callee function by a function pointer which
holds a value of an address corresponding to the callee
function; the value of the function pointer may change
during execution of the application object code.

For a direct, local function call, the calling function
provides the TOC for the callee function in the TOC register;
therefore, for a direct, local function call, the local entry
point into the callee function is used. For a direct, external
function call, the calling function does not know the TOC for
the callee function; therefore, for a direct, external function
call, the global entry point into the callee function is used.
For an indirect function call, it is not known in advance
whether the function call will be local or external; therefore,
for an indirect function call, the global entry point into the
callee function is also used. In further embodiments, if a
callee function does not require a TOC, regardless of the
type of the function call, the local entry point into the callee
function is used.

FIG. 1 illustrates an embodiment of a computer system
100 for local and global entry points for a callee function.
Computer system 100 comprises a processor 101 and a main
memory 102. Application object code 103, which is gener-
ated from program source code (not shown) by a compiler
such as compiler 105, comprises a plurality of functions, and
is stored in main memory 102 for execution by processor
101. The application object code 103 may be generated by
a compiler that is located on a different computer system
from computer system 100. Shared library code 104 com-
prise functions that are external to application object code
103 and that may be called during execution of application
object code 103 via external function calls (i.e., calls to
functions in other modules). Linker 106 and loader 107
comprise runtime components; the linker 106 links the
application object code 103 before the application object
code 103 is executed by the loader 107. TOC register 108 is

10

15

20

25

30

35

40

45

50

55

60

65

4

located in processor 101. TOC register 108 stores a current
value of a TOC pointer for the currently active function of
application object code 103 or shared library code 104 (i.e.,
the function that is currently executing). The TOC register
108 may be general purpose register R2 in some embodi-
ments. In further embodiments of a computer system such as
computer system 100, the TOC register 108 may store a
GOT value instead of'a TOC pointer value. Function address
register 109 is also located in processor 101, and holds an
address of a currently executing function. Function address
register 109 may be general purpose register R12 in some
embodiments. In some embodiments, the computer system
100 may further comprise another object code module that
is distinct from the application object code 103 and the
shared library code 104, and the other object code module
may also contain functions that are called by application
object code 103 via external function calls.

FIG. 2 illustrates an embodiment of a local function call
205 and an external function call 206. Application object
code 200 may comprise application object code 103 of FIG.
1, and shared library 203 may comprise shared library code
104 of FIG. 1. Calling function 201 and callee function 202
are part of application object code 200, and callee function
204 is part of shared library 203. If the calling function 201
and the callee function 202 are both part of application
object code 200, the callee function 202 is local to the calling
function 201 and the call is a local function call 205, and the
calling function 201 and the callee function 202 have the
same TOC pointer value. If the calling function 201 is part
of the application object code 200, and the callee function
204 is in the shared library 203, then the callee function 204
is external to the calling function 201 and the call is an
external function call 206, and the calling function 201 and
the callee function 204 have different TOC pointer values.
When calling function 201 performs an external function
call to callee function 204, when execution passes from the
calling function 201 to the callee function 204, the value of
the TOC pointer of the calling function 201 is saved from
TOC register 108 to a stack frame corresponding to the
calling function 201 in the runtime stack, and the TOC
pointer value of callee function 204 is stored in TOC register
108. When the callee function 204 exits and execution
passes back to the calling function 201, the value of the TOC
pointer of the calling function 201 is restored to the TOC
register 108 from the stack frame corresponding to the
calling function 201. FIG. 2 is shown for illustrative pur-
poses only; any number of functions may be included in
application object code 200 and shared library 203, and
these functions may call one another in any appropriate
manner. In some embodiments, the computer system 100
may further comprise another object code module that is
distinct from the application object code 103/200 and the
shared library code 104/203, and the other object code
module may also contain functions that are called by appli-
cation object code 103/200 via external function calls such
as external function call 206. There may also be local
function calls between functions that are both within the
same shared library code 104/203.

FIG. 3 illustrates an example of a method 300 for a global
entry point and a local entry point for a callee function in
accordance with an embodiment. FIG. 3 is discussed with
reference to FIGS. 1 and 2. First, in block 301, before
runtime, a compiler, such as compiler 105, generates appli-
cation object code 103 (and, in some embodiments, shared
library code 104) from program source code (not shown).
The compiler that generates application object code 103
(and, in some embodiments, shared library code 104) may

US 9,471,340 B2

5

be located on another computer system that is distinct from
computer system 100. In some embodiments, another com-
piler on a third distinct computer may generate shared
library code 104. During compilation, the compiler 105
inserts a global entry point at the beginning of each callee
function, followed by prologue code comprising instructions
to compute and save the TOC for the callee function,
followed by a local entry point. The main body of a function
is located after its local entry point. It is also indicated in the
program source code whether each function call is direct or
indirect; a direct function call calls the calling function by
name, while an indirect function call references a function
pointer. Next, in block 302, the function calls in the calling
functions in the application object code 103 are resolved as
being local or external. The resolving may be performed by
compiler 105, linker 106, or loader 107, in various embodi-
ments; resolution may occur at different times for different
function calls in the same application object code 103. At the
time of resolution of a function call, the compiler 105, linker
106, or loader 107 inserts instructions that branch from the
function call in the calling function to the global entry point
or the local entry point of the callee function of the function
call, depending on the type of function call (e.g., direct and
local, direct and external, or indirect), in addition to other
instructions, such as PLT stubs, as needed. This is discussed
in further detail with respect to blocks 303-306, and FIGS.
4-8.

Blocks 303-305, and, optionally, block 306, are per-
formed during execution of the application object code 103;
for each function call that is encountered during execution of
application object code 103, one of blocks 303-306 is
performed. In block 303, a direct and local function call is
executed. For the direct and local function call, the caller and
callee functions have the same TOC, which is provided by
the calling function for the callee function in the TOC
register 108. Therefore, the function call in the caller func-
tion branches to the local entry point in the callee function,
skipping the global entry point and the prologue code
comprising the callee TOC computation and save instruc-
tions. Various examples of direct and local function calls are
discussed below with respect to FIGS. 4-6.

In block 304, a direct and external function call is
executed. For the direct and external function call, the caller
and callee functions have different TOC values, so the callee
function must calculate its TOC and store the calculated
TOC in the TOC register 108. Therefore, the function call in
the caller function branches to the global entry point in the
callee function, executes the prologue code to perform TOC
computation and save the computed TOC in the TOC
register 108, and then proceed past the local entry point into
the body of the callee function. An example of a direct and
external function call is discussed below with respect to FIG.
7.

In block 305, an indirect function call is executed. For the
indirect function call, the TOC value of the callee function
is not known in advance, so the callee function must
calculate its TOC and store the calculated TOC in the TOC
register 108. Therefore, the function call in the caller func-
tion branches to the global entry point in the callee function,
executes the prologue code to perform TOC computation
and save the computed TOC in the TOC register 108, and
then proceeds past the local entry point into the body of the
callee function. An example of an indirect function call is
discussed below with respect to FIG. 8. Lastly, in block 306,
a function call to a callee function that does not use a TOC
is executed. In some embodiments, for such a function call,
the local entry point in the callee function is used, regardless

30

35

40

45

50

6

of the type of the function call. In further embodiments, the
compiler may determine at compile time that the callee
function does not use a TOC, and, based on that determi-
nation, omit insertion of the prologue code into the callee
function during block 301.

FIGS. 4-6 illustrate examples of use of a local entry point
for a local and direct function call; in FIGS. 4-6, resolution
of the function call occurs at different times, e.g., compile
time, which is earliest, link time, or load time, which is
latest. In each of FIGS. 4-6, the calling function and the
callee function have the same TOC, and the TOC is provided
for the callee function by the calling function in the TOC
register 108. In example 400 of FIG. 4, resolution that the
function call from calling function F() 402 to callee function
G() 403 is a local function call (i.e., F() and G() are both
in application object code 401) occurs during compile time.
The function call from calling function F() 402 to callee
function G() 403 is also determined to be a direct function
call because G() is called in F() by name. Therefore, the
compiler 105 inserts a direct branch to the local entry point
in callee function G() 403 into calling function F() during
compilation. For the function call from F() to G(), the
global entry point in function G() 403, and the prologue
code that performs computation and storage of the TOC for
function G() 403, are skipped.

In example 500 of FIG. 5, resolution that the function call
from calling function F() 502 to callee function G() 503 is
a local function call (i.e., F() and G() are both in application
object code 501) occurs during link time. The function call
from calling function F() 502 to callee function G() 503 is
also determined to be a direct function call because G() is
called in F() by name. Therefore, the linker 106 inserts a
branch to the local entry point in callee function G() 503
into calling function F() during link time. For the function
call from F() to G(), the global entry point in G() 503, and
the prologue code that performs computation and storage of
the TOC for G() 503, are skipped.

In example 600 of FIG. 6, resolution that the function call
from calling function F() 602 to callee function G() 603 is
a local function call (i.e., F() and G() are both in application
object code 601) occurs during load time. The function call
from calling function F() 602 to callee function G() 603 is
also determined to be a direct function call because G() is
called in F() by name. Therefore, the linker 106 generates
a PLT stub 604 and inserts a branch to the PLT stub 604 into
calling function F() 602. The PLT stub 604 stores the TOC
of' the calling function F(') 602 in the stack frame associated
with F() in the runtime stack, loads a final destination
address to be determined by the loader 107 at load time into
the function address register 109, and then branches to the
address in the function address register 109. In this example,
the loader 107 determines that the address of the local entry
point in callee function G() 603 should be used. The linker
106 also inserts code into the calling function F() to restore
its TOC from the stack frame associated with F() in the
runtime stack after the call to G() has returned. For the
function call from F() to G(), the global entry point in
G() 603, and the prologue code that performs computation
and storage of the TOC for G() 603, are skipped.

FIG. 7 illustrates an example of use of a global entry point
for an external and direct function call. In example 700 of
FIG. 7, resolution that the function call from calling function
F() 702 to callee function G() 703 is an external function
call (i.e., F() and G() are in the different respective modules,
e.g., application object code 701 and shared library 705)
occurs during load time. The function call from calling
function F() 702 to callee function G() 703 is also

US 9,471,340 B2

7

determined to be a direct function call because GO is called
in F() by name. Therefore, the linker 106 generates a PLT
stub 704 and inserts a branch to the PLT stub 704 into calling
function F() 702. The PLT stub 704 stores the TOC of the
calling function F() 702 in the stack frame associated with
F() in the runtime stack, loads a final destination address to
be determined by the loader 107 at load time into the
function address register 109 and then branches to the
address in the function address register 109. In this example,
the loader 107 determines that address of the global entry
point in callee function G() 703 should be used. The linker
106 also inserts code into the calling function F() to restore
its TOC from the stack frame associated with F() in the
runtime stack after the call to G() has returned. After
entering callee function G() 703 at the global entry point,
the prologue code performs calculation of the TOC for callee
function G() 703 and storing of the calculated TOC in the
TOC register 108 before proceeding with execution of the
callee function G() 703. The TOC for callee function G()
703 may be calculated based on adding an offset value to the
value that is stored in the function address register 109.

FIG. 8 illustrates an example of use of a global entry point
for an indirect function call. In example 800 of FIG. 8, it is
determined that the function call from calling function F()
802 to callee function G1() 802A or callee function G2()
802B is an indirect function call (i.e., the function call in
F() is a reference to a pointer that holds an address that
points to the callee function; the pointer value may be
changed during execution) occurs during compile time. In
various embodiments, calling function F() 802, callee
function G1() 802A, and callee function G2() 802B may be
in the same module, or in different modules. The compiler
105 inserts an instruction into the calling function F() 801
to store the TOC of the calling function F() 801 in the stack
frame associated with F() in the runtime stack, load the
address that is stored in the function pointer (PTR) into the
function address register 109, and then branch to the loaded
address, which branches to the global entry point in either
callee function G1() 802A or G2() 802B. The compiler 105
also inserts an instruction into the calling function F() to
restore its TOC from the stack frame associated with F()
after the call has returned. In each of callee functions G1()
802A or G2() 802B, the TOC for the callee function is
calculated and stored in the TOC register 108 by the
prologue code before proceeding with execution of callee
function G1() 802A or G2() 802B. The TOC for callee
function G1() 802A or G2() 802B may be calculated based
on adding an offset value to the value that is stored in the
function address register 109.

Technical effects and benefits include reduction in unnec-
essary TOC operations during execution of application
object code.

Referring now to FIG. 9, in one example, a computer
program product 900 includes, for instance, one or more
storage media 902, wherein the media may be tangible
and/or non-transitory, to store computer readable program
code means or logic 904 thereon to provide and facilitate one
or more aspects of embodiments described herein.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage

10

15

20

25

30

35

40

45

50

55

60

65

8

medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be

US 9,471,340 B2

9

understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A computer implemented method for a global entry
point and a local entry point for a callee function, the method
comprising:

20

25

30

40

45

50

10

executing, by a processor, a function call from a calling
function to the callee function, the executing compris-
ing:

based on the function call being a direct and external
function call, entering the callee function at the global
entry point of the callee function and executing pro-
logue code in the callee function that calculates and
stores a table of contents (TOC) value for the callee
function in a TOC register, wherein the TOC value for
the callee function is calculated by the prologue code
based on a function address register and an offset;

based on the function call being a direct and local function
call, entering the callee function at the local entry point
of the callee function, wherein entering the callee
function at the local entry point skips the prologue
code; and

based on the function call being an indirect function call,
entering the callee function at the global entry point and
executing the prologue code;

wherein the global entry point, prologue code, and local
entry point are inserted into the callee function by a
compiler, such that the compiler inserts the global entry
point at the beginning of the calling function, inserts the
prologue code directly after the global entry point, and
inserts the local entry point directly after the prologue
code and before body of the callee function.

2. The method of claim 1, wherein whether the function
call is a local function call is resolved by a compiler or a
linker, and wherein, based on the function call being the
direct and local function call, a direct branch to the local
entry point in the callee function is inserted into the calling
function by the compiler or the linker.

3. The method of claim 1, wherein whether the function
call is a local function call is resolved by a loader, and
wherein, based on the function call being the direct and local
function call, a branch to a procedure linkage table (PLT)
stub is inserted into the calling function by the linker, and the
PLT stub branches to the local entry point in the callee
function.

4. The method of claim 1, wherein whether the function
call is an external function call is resolved by a loader, and
wherein, based on the function call being the direct and
external function call, a branch to a procedure linkage table
(PLT) stub is inserted into the calling function by the linker,
and the PLT stub branches to the global entry point in the
callee function.

5. The method of claim 1, wherein the calling function
loads a function pointer address that points to the global
entry point in the callee function based on the function call
being the indirect function call.

6. The method of claim 1, further comprising, based on
the callee function comprising a function that does not use
a TOC, entering the callee function at the local entry point.

7. A computer program product for implementing a global
entry point and a local entry point for a callee function, the
computer program product comprising:

a computer readable storage medium having program
instructions embodied therewith, the program instruc-
tions readable by a processing circuit to cause the
processing circuit to perform a method comprising:

executing, by a processor, a function call from a calling
function to the callee function, the executing compris-
ing:

based on the function call being a direct and external
function call, entering the callee function at the global
entry point of the callee function and executing pro-
logue code in the callee function that calculates and

US 9,471,340 B2

11

stores a table of contents (TOC) value for the callee
function in a TOC register, wherein the TOC value for
the callee function is calculated by the prologue code
based on a function address register and an offset;

based on the function call being a direct and local function
call, entering the callee function at the local entry point
of the callee function, wherein entering the callee
function at the local entry point skips the prologue
code; and

based on the function call being an indirect function call,
entering the callee function at the global entry point and
executing the prologue code;

wherein the global entry point, prologue code, and local
entry point are inserted into the callee function by a
compiler, such that the compiler inserts the global entry
point at the beginning of the calling function, inserts the
prologue code directly after the global entry point, and
inserts the local entry point directly after the prologue
code and before body of the callee function.

8. The computer program product of claim 7, wherein

whether the function call is a local function call is resolved
by a compiler or a linker, and wherein, based on the function

10

15

20

12

call being the direct and local function call, a direct branch
to the local entry point in the callee function is inserted into
the calling function by the compiler or the linker.

9. The computer program product of claim 7, wherein
whether the function call is a local function call is resolved
by a loader, and wherein, based on the function call being the
direct and local function call, a branch to a procedure
linkage table (PLT) stub is inserted into the calling function
by the linker, and the PLT stub branches to the local entry
point in the callee function.

10. The computer program product of claim 7, wherein
whether the function call is an external function call is
resolved by a loader, and wherein, based on the function call
being the direct and external function call, a branch to a
procedure linkage table (PLT) stub is inserted into the
calling function by the linker, and the PLT stub branches to
the global entry point in the callee function.

11. The computer program product of claim 7, wherein the
calling function loads a function pointer address that points
to the global entry point in the callee function based on the
function call being the indirect function call.

#* #* #* #* #*

